37 research outputs found

    Application of Diversity Techniques for Multi User IDMA Communication System

    Get PDF
    In wireless communication, fading problem is mitigated with help of diversity techniques. This paper presents Maximal Ratio Combining (MRC) diversity approach to uproot the fading problem in interleave-division multiple-access (IDMA) scheme. The approach explains receiver diversity as well as transmits diversity analysis as 1:2 and 2:1 antenna system in fading environment, no. of antennas can be increased to improve diversity order. Random interleaver as well tree based interleaver has been taken for study. Significant improvements in performance of IDMA communication is observed with application of diversity techniques. Keywords: Random Interleaver, Tree Based Interleaver, MRC diversity, IDM

    Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    Get PDF
    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ∼10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50°C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme

    Structure of endoglucanase Cel9A from the thermoacidophilic Alicyclobacillus acidocaldarius

    No full text
    Here, the crystal structure of an endoglucanase, Cel9A, from Alicyclobacillus acidocaldarius (Aa_Cel9A) is reported which displays a modular architecture composed of an N-terminal Ig-like domain connected to the catalytic domain. This paper describes the overall structure and the detailed contacts between the two modules

    Molecular simulations provide new insights into the role of the accessory immunoglobulin-like domain of Cel9A

    Get PDF
    Cel9A from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius belongs to the subfamily E1 of family 9 glycoside hydrolases, many members of which have an N-terminal Ig-like domain followed by the catalytic domain. The Ig-like domain is not directly involved in either carbohydrate binding or biocatalysis; however, deletion of the Ig-domain promotes loss of enzymatic activity. We have investigated the functional role of the Ig-like domain using molecular dynamics simulations. Our simulations indicate that residues within the Ig-like domain are dynamically correlated with residues in the carbohydrate-binding pocket and with key catalytic residues of Cel9A. Free energy perturbation simulations indicate that the Ig-like domain stabilizes the catalytic domain and may be responsible for the enhanced thermostability of Cel9A
    corecore